
Due to the presence of singularities in the solution of the elliptic problems on non smooth 
domains the rate of convergence of the numerical methods degrades. We present an 
exponentially accurate nonconforming hp/spectral element method for elliptic problems 
using parallel computers. We consider an elliptic boundary value problem where the 
differential operator satisfies Babuska-Brezzi inf-sup condition on a curvilinear polygon 
whose sides are piecewise analytic and assume the boundary conditions are of mixed 
Neumann and Dirichlet type. 
          A geometric mesh is used at the corners. In a neighbourhood of the corners 
modified polar coordinates ),( kk θτ are used, where kk rln=τ  and ),( kkr θ  are polar 
coordinates with origin at the vertex . Away from sectoral neighbourhoods of the 
corners a global coordinate system is used consisting of 

kA

1 2( , )x x  coordinates.  
Differentiability estimates are derived with respect to these new variables and a stability 
estimate is proved. 
 
 With this mesh we seek a solution which minimizes the sum of the squares of a 
weighted squared norm of the residuals in the partial differential equation and the sum of 
the squares of the residuals in the boundary conditions in fractional sobolev norms and 
enforce continuity by adding a term which measures the sum of the squares of the jump 
in the function and its derivatives in fractional sobolev norms to the functional being 
minimized.  These computations are done using modified polar coordinates in sectoral 
neighbourhoods of the corners and a global coordinate system elsewhere in the domain. 
 
 The spectral element functions are nonconforming.  The element  function at 
corner most elements is represented by a constant.  The element functions are a sum of 
tensor products of polynomials of degree W in their respective modified coordinates in 
all the other elements of sectoral neighbourhood of the corners.  The remaining 
quadrilateral elements are mapped to the unit square S and the element function is 
represented as a sum of tensor products of polynomials of degree W in ξ   and  η , the 
transformed variables. 
 
 The method is essentially a least-squares method and a solution can be obtained 
using the preconditioned conjugate gradient technique for solving the normal equations. 
The vector composed of the values of the spectral element functions at the Gauss-
Lobatto- Legendre points is divided into two sub vectors – one consisting of values of the 
spectral element functions at the vertices of the domain constitute the set of common 
boundary values , and the other consisting of the remaining values which we denote 
by .  Since the dimension of the set of common boundary values is so small a nearly 
exact approximation to the Schur Complement matrix can be computed.  A decoupled 
block diagonal preconditioner is proposed for the matrix in the normal equations such 
that the condition number of the preconditioned system is .  Moreover the 
preconditioner is a block diagonal matrix such that each diagonal block corresponds to a 
different element, and so can be easily inverted. 
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 Let W be proportional to M, the number of layers in the geometrical mesh.  Then 
the method requires  iterations of the preconditioned conjugate gradient 
method to obtain the solution to exponential accuracy and requires  
operations on the parallel computer with   processors.  Once we have obtained our 
approximate solution consisting of nonconforming spectral element functions we can 
make a correction to it so that the corrected solution is conforming and is and 
exponentially accurate approximation to the actual solution in the   norm over the 
whole domain. 
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 The method works for non self adjoint problems too.  The method is 
asymptotically faster than the h p−  finite element method by a factor of .  
Computational results for scalar problems and the equations of elasticity are provided to 
validate the error estimates and estimates for computational complexity which have been 
obtained. 
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 In Chapter 2 the problem is defined, and discretization, and local transformations 
are described.  The differentiability estimates in modified polar coordinates are obtained 
and prove the stability theorem on which the method is based.  In Chapter 3 the 
numerical scheme which is based on the stability estimate, is described and error 
estimates are obtained.  In Chapter 4 we examine the issues of parallelization and 
preconditioning.  Finally in Chapter 5 computational results are provided. 


